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Abstract

This paper studies the point location problem in Delaunay triangulations
without preprocessing and additional storage. The proposed procedure �nds
the query point by simply \walking through" the triangulation, after selecting
a \good starting point" by random sampling. The analysis generalizes and
extends a recent result for d = 2 dimensions by proving this procedure to take
expected time close to O(n1=(d+1)) for point location in Delaunay triangulations
of n random points in d = 3 dimensions. Empirical results in both two and three
dimensions show that this procedure is e�cient in practice.

1 Introduction

Point location is one of the classical problems in computational geometry and has
various applications of practical relevance, for example, in the areas of geographic
information systems (GIS) or computer-aided design and engineering (CAD/CAE).
The problem is well studied in the computational geometry literature and several
theoretically optimal algorithms have been proposed. Unfortunately, algorithms that
are optimal in theory do not necessarily yield to good practical performance. This is
also true in the case of point location, mainly because of the necessary preprocessing
time and additional storage requirements.

Actual engineering implementations often use tree structures to guide the point loca-
tion, for example, the \alternating digital tree" of Bonet and Peraire [BP91], which
typically come very close to the theoretically optimal logarithmic time complexity of
the problem. However, all these methods require a certain amount of preprocessing
for the creation of additional data structures (and their maintenance, for the dynamic
version of the problem). \Bucketing" algorithms, for example, Asano et al. [AEI+85],
can even achieve O(1) search time, on average, for uniform distribution, for input in
a bounded domain, but they, too, require extra preprocessing, especially within each
bucket, and additional storage. Here, we will discuss a technique that is e�cient in

�The Authors may be contacted at: E. P. M�ucke, epm@ansys.com, ANSYS, Inc., 201 Johnson
Road, Houston, PA 15342-1300, USA. I. Saias, isaac@lanl.gov, and B. Zhu, bhz@lanl.gov, both
at Los Alamos National Laboratory, CIC-19 Computer Research & Applications Group, M.S. B256,
Los Alamos, NM 87545, USA.
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practice, uses no preprocessing time, no additional storage, and, as a bonus, could
not be easier to implement.

The point location problem in its full generality deals with locating query points in ar-
bitrary subdivisions. This work, however, focuses on point location in triangulations
(in fact, the analysis is even further restricted to Delaunay triangulations of random
points). This is justi�ed because regions of arbitrary subdivisions can be triangu-
lated; moreover, the query problem in triangulations itself occurs quite frequently in
practice, for example, in mesh generation and �nite-element analysis (FEA).

Point location by walking. The basic idea is straightforward and not at all new;
it goes back to early work on constructing Delaunay triangulations in 2D and 3D
[GS78, B81]. Given a Delaunay triangulation D of a set X of n points in IRd, and a
target point q; in order to locate the simplex (triangle in 2D, tetrahedron in 3D) in D
containing q, start at some arbitrary simplex in D and then \walk" from simplex to
neighboring simplex \in the general direction" of the target point q. The underlying
assumption is that the D is given by an internal representation allowing constant-time
access between neighboring simplices. The list of suitable data structures includes
the 2D quad-edge data structure [GS85], the edge-facet structure in 3D [DL89], its
specialization and compacti�cation to the domain of 3D triangulations [M93], or its
generalization to d dimensions [B93].

The pseudo-code for the simple \walking" method in 2D can be found in [GS85]. Note
that this procedure is only guaranteed to terminate in Delaunay triangulations. For
arbitrary triangulations it might go into an in�nite loop; see, for example, [GH95].
However, the in�nite loop can be broken (for all practical purposes) by introducing
randomness when selecting which neighboring simplex to visit next; see section 6.

The \walking" method has been ignored by most theoreticians in computational
geometry since not much can be said about its performance theoretically, other than
it is \expected" to take time proportional to n1=d when the points are randomly
distributed [GS78, B81]. However, because of its exceptional simplicity, the method
is used by practitioners in the geometric computing community, in particular, in mesh
generation for FEA [GH92, BL95].

The jump-and-march. In the following, we modify the method somewhat. First,
we \march" towards q by strictly traversing the simplices intersected by a line segment
L, starting at a vertex of the initial simplex, and ending in q. This makes it easier
to analyze the procedure (and trivially eliminates the above mentioned in�nite-loop
problem); although, as discussed empirically in section 6, it seems to reduce the
expected number of visited simplices only marginally, and actually degrades the actual
performance. Second, we \jump" to a good starting point via random sampling on
the point set fX1; X2; : : : ; Xng. This enhances the overall procedure signi�cantly; in
a sense, we are simulating the e�ects of the bucketing approach by random sampling.

Given the Delaunay triangulation D of these n points fX1; X2; : : : ; Xng, and a query
point q, the following procedure locates the simplex of D containing q, if such a
simplex exists.

(1) Selectm points Y1; : : : ; Ym at random and without replacement fromX1; : : : ; Xn.

(2) Determine the index j 2 f1; : : : ;mg minimizing the distance d(Yj ; q).
Set Y = Yj .
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(3) Locate the simplex containing q by traversing all simplices intersected by the
line segment (Y; q).

Step (3), that is, the straight \march," can be implemented in constant time per
simplex visited, once the initial simplex, intersected by L and incident to \starting
point" Y , is determined.

Motivated by the positive empirical results of [M93], where the jump-and-march (or
rather, the jump-and-walk; see also Section 6) is used to implement the randomized
incremental 
ip algorithm to construct 3D Delaunay triangulations, this procedure
was recently analyzed for the 2D case, with the result that the expected query time
is O(n1=3) when the points are randomly distributed [DMZ95]. This result, in turn,
builds on the work of Bose and Devroye [BD95] who prove that for any line segment
L the expected number of intersected triangles in proportional to jLjn1=2.
In the following, both results are extended to IR3, showing that the jump-and-march
point location in spatial Delaunay triangulations of n random points has an expected
running time of O

�
�(n)1=4 n1=4 (logn= log logn)3=4

�
, where �(n) denotes the expected

degree of a Delaunay vertex. A result by Bern et al. [BEY91] on the expected maxi-

mum degree would give �(n) = O(logn= log logn). On the other hand, Dwyer [Dwy91]
shows that �(n) = O(1) for any �xed dimension d, under the assumption that the
points are chosen uniformly at random in a d-dimensional ball. In any case, it is
always a fair assumption that Delaunay triangulations occurring in problems of prac-
tical relevance are only of linear size (rather than worst-case quadratic size), and
we can immediately argue that �(n) is constant for all practical purposes, yielding
an expected running time close to O(n1=4). This compares well to the theoreti-
cally optimal O(logn) bound, at least for practical sizes of input data; for example,
n1=4= log2 n < 2:5, for n in the range up to 107.

On a theoretical side, our work addresses and solves two di�cult issues. First, when
proving \probabilistic impossibility results" for Delaunay triangulations one is nat-
urally led to de�ne volumes and to argue that these volumes are likely to contain
some Delaunay vertices. One must be careful though to de�ne (as much as possible)
these volumes independently from the vertices. We achieve this di�cult task in 3D.
Second, the perturbing e�ect of the boundary is very well-known. The probabilistic
model of [BEY91], for instance, was designed to analyze typical properties of Delau-
nay triangulations away from the boundary. Here, we provide a speci�c estimate of
the range of this perturbation. Our methods seem well suited to bring even more
precise results.

Outline. The paper is organized as follows. In Sections 2 and 4, we �rst generalize
the result of [BD95] regarding the intersection of a line segment with a random
Delaunay triangulation to 3D. Then, we generalize the proof of [DMZ95] to 3D.
Section 3 presents an outline of the proof. In Sections 5 and 6, we present empirical
results over randomly generated point sets ranging from n = 1000 to 50000. Our
tests con�rm that the method is e�cient in practice and compares with theoretically
optimal O(logn) methods, at least in the above range, which seems to be of most
relevance for practitioners in GIS and CAD.
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2 Statement of Results

Let C be a convex domain of IR3 and let � and � be two reals such that 0 < � < �.
We say that a probability measure P is an (�; �)-measure over C if P [C] = 1 and
if we have ��(S) � P [S] � � �(S) for every measurable subset S of C, where � is
the usual Lebesgue measure.1 An IR3-valued random variable X is called an (�; �)-
random variable over C if its probability law L(X) is an (�; �)-measure over C. A
particular and important example of an (�; �)-measure P is when P is a probability
measure with density f(x) such that � � f(x) � � for all x 2 C. One of the
advantages of our more general notion is that it allows for a probability measure
charging only points with rational coordinates: this is the case for most computer
simulations. This probabilistic model was introduced in [BD95]. The Poisson model
of [BEY91] is related to ours in the sense that, conditioned on the number n of
points observed over a �nite volume, the probability distribution is uniform, that is,
an (�; �)-measure.

Below is our main result on the expected running time of the jump-and-march algo-
rithm, when applied on D, the Delaunay triangulation of n random points in IR3.

Theorem 1. Let C be a bounded convex set of IR3 having small curvature. Let
X1; : : : ; Xn be n points drawn independently in C from an (�; �)-measure. Then there
exist constants c1; c2 and c3 depending only upon �; � and C such that the following
holds. Assume that m � n1=5 and that the query point is selected independently of
X1; : : : ; Xn and is at distance of at least c1=n

1=18 from the boundary @C. Then the
expected time of the jump-and-march algorithm is bounded by

c2m�(n) + c3(n=m)1=3 logn= log logn ;

where �(n) is the expected vertex degree of the Delaunay triangulation. In particular,
the expected time is optimized to O

�
�(n)1=4 n1=4 (logn= log logn)3=4

�
with the choice

of m = �
�
n1=4=�(n)3=4 (logn= log logn)3=4

�
.

The proof of Theorem 1 rests on the following theorem.

Theorem 2. Let C be a bounded convex set of IR3 having small curvature. Let
X1; : : : ; Xn be n points drawn independently in C from an (�; �)-measure. Then there
exist constants c4 and c5 depending only upon �; � and C such that the following
holds. Let L be a segment in C being at distance of at least c4(logn=n)

1=3 from the
boundary @C. Let N be the number of intersections between L and D. Then:

E[N ] � c5 jLjn1=3 logn= log logn :

We can easily extend Theorem 2 to the case where L is a random segment independent
of the n pointsX1; : : : ; Xn. For this, de�ne the eventB = fd(L; @C) � c4(logn=n)

1=3g.
We then have E [N jB ] � c5E

� jLj �� B �
n1=3 logn= log logn. In Section 4, we �rst

prove Theorem 2 following the same ideas as [BD95]; however, we would like to point
out that the technical details are quite di�erent in 3D and more di�cult. Given
Theorem 2, it is easy to generalize the result of [DMZ95] to obtain Theorem 1.

1Note that the relation �(C) � 1=� <1 implies that C has �nite area. The convexity of C then
implies that C is bounded (that is, that C is included in some �nite ball.)
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Theorems 1 and 2 are true without the requirement that C have a small curvature. We
place this requirement to emphasize that the constants intervening in the theorems
are big unless the curvature of C is small.

To �nish let us clarify some rather di�cult probabilistic issues underlying our results.
It is important to realize that our probability results involve two very di�erent sources
of randomness. The �rst source of randomness is the (�; �)-measure generating the
random input X1; : : : ; Xn. In particular, the expected vertex degree �(n) is computed
with respect to this probability measure. The second source of randomness is the
randomness introduced in step (1) of our randomized algorithm. The expected values
presented in Theorems 1 and 2 are computed over both sources of randomness. In
addition, one should realize that, in Theorem 1, the query point is not sampled from
any �xed random distribution: this point is chosen non-deterministically. One way
to express that, is to say that the query point is selected by an adversary. The
adversary can itself use randomness and can be assumed to know the two probability
distributions used in our analysis; of course, a critical restriction is that the adversary
must select the query point unaware of the realization of these distributions.

3 General Outline of the Proof

As mentioned above, Theorem 1 is a rather simple consequence of Theorem 2. We
outline �rst the proof of Theorem 1. In general, the time required to walk through
a segment L is proportional to the number of Delaunay tetrahedra crossed by L. By
Theorem 2, this number is close to jLjn1=3 provided that the segment L is chosen
independently of the triangulation D. To apply this result to the walk-phase, when
one walks from Y (the point selected in the jump-phase) to q (the query point),
we proceed as follows. We consider the triangulation D0 induced by the n � m
points not used in the jump-phase. One can easily show that the total time required
by the walk-phase is bounded by the time to walk from Y to q in D0, plus the
total tetrahedron-degree (in D) of the m points Y1; : : : ; Ym. The point Y depends
only on Y1; : : : ; Ym and is independent from the triangulation D0. One can therefore
apply Theorem 2 and show that the expected time to walk from Y to q in D0 is
O( 1

m1=3 (n�m)1=3 logn= log logn). (The assumption m � n1=5 is used there.) On the
other hand, the expected tetrahedron-degree (in D) of each point Y1; : : : ; Ym is equal
to �(n). As mentioned in Section 1, �(n) = O(1) in practical situations and always
at most O(logn= log logn). This establishes Theorem 1.

We now turn to an outline of the proof of Theorem 2. This proof is longer and requires
several technical lemma. To bound the (expected) number of tetrahedra traversed by
a segment L, we cover L with little balls of appropriate radius and reduce the problem
to bound the (expected) number N2 of tetrahedra intersected by each of these balls
B(y; r). (This idea is directly inspired by [BD95].) To estimate (the expected value
of) N2 we introduce and analyze N1: N1 is the number of sites Xi such that one of
the Delaunay tetrahedra incident to Xi intersects B(y; r). To connect N2 to N1 we
use an extension of a result established in [BEY91]: with high probability, for every
site Xi, the number of Delaunay tetrahedra incident to Xi is O(logn= log logn). This
allows us to derive that E[N2] = O(E[N1] logn= log logn).

We have reduced the original problem to the one of estimating an upper bound of
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E[N1]. For this, we consider a given site X1 and estimate the probability that one of
the Delaunay tetrahedra incident to X1 intersects B(y; r): E[N1] is equal to n times
this probability. Our majoration hinges on a geometric argument: we consider a set
of three little balls A1; A2; A3 positioned at equal distance between X1 and y. (This
set depends upon X1 and y but not upon X2; : : : ; Xn.) We show that every ball
containing X1 and intersecting B(y; r) must contain one of the three balls A1; A2; A3.
By the Delaunay empty-ball condition, no Delaunay tetrahedron incident to X1 can
intersect B(y; r) if each of the three balls A1; A2; A3 contains a site Xj . This fact
allows us to bound the probability that one of the Delaunay tetrahedra incident to
X1 intersects B(y; r). This in turn allows us to bound E[N1], then E[N2] and to
prove Theorem 2.

To �nish we mention some thorny technical issues encountered in the proof. The main
customary argument used when proving probabilistic upper bounds for Delaunay
triangulations consists of de�ning volumes, (usually balls), and to argue that no
Delaunay site should be contained in these volumes. One must be careful to de�ne
as much as possible these volumes independently of the Delaunay triangulation. To
achieve that purpose we introduce in Section 4.1 the notion of a \spindle": the spindle
is composed of the three balls A1; A2; A3. The independence of the spindle from the
Delaunay triangulation is used critically in the proof of Lemma 5.

A second di�culty comes from the fact that all three balls A1; A2; A3 might not be
fully contained in C when X1 is too close to the boundary of C. The formal treatment
of this situation complicates the estimation of E[N1] done in Lemma 5.

4 Probabilistic Analysis

A face F (that is, an edge, triangle, or tetrahedron) of the Delaunay triangulation D
is called a Delaunay face; we denote this by F 2 D. For every four points x; y; t; z in
general position we let B(xytz) be the unique ball circumscribed to these four points.
Also, for every point x and r � 0, we let B(x; r) denote the ball of radius r centered
at point x.

Our arguments proceed as follows. First, we state and prove a geometric lemma
(Lemma 3), which will later be used in the proof of Lemma 5. Second, we give a set
of probabilistic lemmas (Lemma 4{7), which, in a third step, we combine to prove
Theorems 1 and 2.

4.1 A Geometric Lemma

Let l be a positive number. We de�ne an l-spindle to be a geometric object composed
of an axle surrounded by three balls:

� The axle is a line segment of length l. We let xy denote that line segment.

� At q = x+y
2 , we attach three spokes of length k1l. The spokes are in a plane

perpendicular to the axle; each pair of spokes forms an angle of 2�
3 .
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Figure 1: De�ning k1; k2 and k3.

� We place a ball Ai at the end of each of the three spokes i = 1; 2; 3. These balls
have radius k2l and their centers are at distance (k1 � k2)l from q.

The collection of the three balls A1; A2; A3 is called the wheel of the spindle. For
Lemma 3 below, we restrict the numbers k1; k2; k3 to be positive such that k1+k3 <

1
2

and 3k2 + 2k3 < k1. These numbers are considered constants throughout this text.
Nevertheless, we will impose in the proof of Lemma 5 some additional restrictions
on the choice of these \constants".

Figure 1 illustrates the situation. The plane of the �gure (which is the plane of the
spindle which contains the centers of A1; A2; A3) is perpendicular to xy and goes
through q. Let P2 be any plane going through q and containing xy, and let P3 and
P 03 be the two planes parallel to P2 and at distance k3 of P2.

Let also � denote the angle between P2 and the spoke of A1, and consider the case
where � = �

6 . In this case, the balls A1 and A3 are at the same distance of P2, namely:

d(A1;P2) = d(A3;P2)
def

= dmin. As illustrated in Figure 2, dmin = l1 sin(
�
6 ) = l1

2 .
The quantities l1; l2 and l3 satisfy the three linear relations k1 = l1 + l2 + l3 and
l3 = k2 = l2 sin(

�
6 ) allowing us to conclude that dmin =

l1
2 = 1

2 (k1 � 3k2).

k
2 l

1

l
2 

l
3

d
min

π/6
P

2

A
1

q

Figure 2: The case where � = �=6.

For a general value of �, we can easily check that there is (at least) one ball Ai such
that dmin � d(Ai;P2) and such that Ai is on same side of P2 as P3. Symmetrically,
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there is (at least) one ball Aj with dmin � d(Aj ;P2) and which is on the same side
of P2 as P 03. Therefore, the choice k3 < dmin ensures that, for every value of �, there
are two balls Ai and Aj such that Ai is \below" P3 and such that such that Aj is
\above" P 03. (The terms \below" and \above" are used for simpli�cation and are
intuitively made clear by Figure 1.)

Lemma 3. Let x; y; x1; : : : ; xn be points in IR3 with l = d(x; y) and let k1; k2; k3
be three positive numbers such that k1 + k3 < 1

2 and 3k2 + 2k3 < k1. Let S be
any l-spindle whose axle is xy and let as before A1; A2; A3 be the three balls of its
wheel. Finally, let D be the Delaunay triangulation of x; x1; : : : ; xn. If all three balls
A1; A2; A3 each contain a point xj , then there exists no tetrahedron in D incident to
x which intersects (touches, crosses or contains) the ball B(y; k3l).
Proof: We begin by noting that k1 + k3 < 1

2 implies that the balls B(q; k1l) and
B(y; k3l) do not intersect (see also Figure 3). We are going to show that every ball
B having x on its boundary and intersecting ball B(y; k3l) must contain one of the
three balls A1; A2; A3 in its interior. This implies the lemma: Assume there exists
a tetrahedron xtzw 2 D intersecting B(y; k3l). The ball B(xtzw) circumscribed to
xtzw obviously also intersects B(y; k3l). The prerequisite of the lemma states that
each of the A1; A2; A3 contains a point xj . As we claim, this implies that B(xtzw)
contains one of the A1; A2; A3 and thus the corresponding xj . This contradicts the
assumption that xtzw is a Delaunay tetrahedron.

Consider therefore a ball B having x on its boundary and intersecting B(y; k3l); let o
denote its center. Figure 3 illustrates the situation as a projection onto the plane oqy,
which is perpendicular to the plane of S. All the points mentioned in the �gure do
belong to the plane oqy. (But o is not represented for lack of space.) In particular,
the point x, being on the line qy, is part of the �gure. Also, let y0 be a point of
B \ B(y; k3l) \ Plane(oqy). (This intersection is not empty because B intersects
B(y; k3l).) The radius k3l being smaller than the radius k1l, the line xy

0 necessarily
intersects B(q; k1l). (See Figure 3.) The intersection is a segment that we denote cd.
By convexity, the ball B contains xy0 and hence also contains cd. This immediately

implies that the intersection of the two balls B \ B(q; k1l) def

= I1 is not empty. I1 is
therefore either one of the two balls or the union of two spherical caps. The fact that
k1 � k3+k1 < 1=2 implies that x does not belong to B(q; k1l) and hence that I1 6= B.
On the other hand, if I1 = B(q; k1l) then B contains all three balls A1; A2; A3 and
we are done.

x

y’
d

q y

B

k
k

3
1 l

la
c b

Figure 3: Plane oqy is the plane of the �gure (o, the center of ball B, is not drawn);
it is perpendicular to the plane of the spindle S (that is, the plane of Figure 1). All
the points depicted lie in plane oqy; points x; a; b; y0 lie on ball B; points x; c; d and
y0 are collinear. The shaded area represents I2.
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We can therefore reduce the analysis to the case of Figure 3: the intersection I1
(is convex and) consists of two spherical caps sitting on a disk C1; this disk is per-
pendicular to the line segment oq (joining the centers of the two balls) and hence
perpendicular to the plane oqy of Figure 3; the latter plane intersects C1 in the line
segment ab. Consider now another plane, also perpendicular to the plane oqy, but
containing the line segment xy0. This plane cuts B(q; k1l) in a disk that we denote C2.
This disk is also perpendicular to the plane oqy which it intersects in line segment cd.
Figure 3 illustrates that, by convexity of the arc xaby0, the line segment xcdy0 does
not intersect the segment ab. This implies that the two disks C1 and C2 (which are
both perpendicular to plane oqy) do not intersect. Now set I2 to be the spherical cap
of B(q; k1l) \below" disk C2, that is, the spherical cap of B(q; k1l) cut by C2 which
does not contain the disk C1. Our discussion allows us to conclude that I2 � I1.
Recall that, in the previous argument, y0 is any point in B \ B(q; k3l) \ Plane(oqy).
Therefore, in the case where y belongs to B we can select y0 to be equal to y. In
that case I2 is an hemisphere of B(q; k1l) (which contains trivially one of the balls
A1; A2; A3). On the other hand, if y 62 B, then I2 is the smaller of the two spherical
caps determined by C2.
Summarizing all the previous discussion, we have established so far that, if B is a
ball having x on its boundary and intersecting B(y; k3l), then there exists a plane
P containing x, intersecting B(y; k3l), and such that the intersection B \ B(q; k1l)
contains the smaller of the two spherical caps cut out of B(q; k1l) by P . Furthermore,
it is clear that we can restrict ourselves to the case where P is tangent to B(y; k3l);
this corresponds to the case where the spherical cap I2 is minimal among all spherical
caps cut by planes containing x and intersecting B(y; k3l). We can therefore rewrite
the preceding summary as follows: Let B be any ball having x on its boundary
and intersecting B(y; k3l). Then there exists a plane P0 containing x and tangent
to B(y; k3l) such that the intersection B \ B(q; k1l) contains the smaller of the two
spherical caps cut out of B(q; k1l) by P .

1

0
P

P

P

2

3

k
1

P

l
x q y

y’

Figure 4: The minimal spherical cap I2 cut out of the ball B(q; k1l) by the plane
P0 containing x and tangent to B(y; k3l). The plane of the picture is the plane oqy,
where o is the center of B.
Figure 4 illustrates the new situation. P0 is such a plane tangent to B(y; k3l), and I2
is the smaller of the two spherical caps that P0 cuts o� B(q; k1l). Now let P2 be the
plane perpendicular to the plane oqy (the plane of the �gure) which contains the line
xqy, and let P3 be the plane parallel to P2 and tangent to B(y; k3l); obviously, the
distance from q to P3 is equal to k3l. Finally, let P1 denote the plane that contains
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q and is perpendicular to P2. Note that P1 is also the plane of Figure 1 de�ned by
the centers of the three balls A1; A2 and A3 of the spindle S. Moreover, the planes
P2 and P3 intersect P1 as indicated on Figure 1.

To come to a conclusion, let I3 denote the smaller of the two spherical caps cut by
P3 into B(q; k1l). Our earlier choices for k1; k2; k3 imply that I3 contains at least one
of the three balls A1; A2; A3 of the spindle S. Since I3 � I2 � I1, we established
that the ball B contains at least one of the three balls of the spindle, and Lemma 3
is proven.

4.2 A Set of Probabilistic Lemmas

In order to prove the theorems, we need a set of probabilistic lemmas. The proof of
Lemma 5 hinges critically on Lemma 3.

y

C

Figure 5: For every point y of a convex solid C and every small r, C contains a
spherical cone of radius r and of solid angle � issued from y.

Lemma 4. Let X1 be a random variable drawn from an (�; �)-measure over a
bounded convex set C. Then there exist constants r0 > 0 and 
 > 0 such that
for every r � r0,

inf
y2C

P [ d(X1; y) � r ] � 
 r3 :

Proof: By convexity of C there exists a distance r0 and a value � � 4� such that
the following holds. Let y be any point in C. Then there exists a spherical cone C
with summit y, radius r and solid angle � such that C is included in C. The volume
Vol(C) of this cone is �

4�r
3 Therefore, if X1 is a random variable drawn from an

(�; �)-measure over C, we have:

P [ d(X1; y) � r ] � P [X1 2 C ] � �Vol(C) = �
�

4�
r3 :

In the following, we denote the set of all Delaunay tetrahedra incident to a point Xi

by TXi . Lemma 5 estimates N1, the number of Xi's such that TXi intersects B(y; r);
in other words, the number of Xi's with the property that at least one of its incident
Delaunay tetrahedra intersects B(y; r). With this, Lemma 6 will estimate the number
of Delaunay tetrahedra intersecting B(y; r).
Lemma 5. Consider n points X1; : : : ; Xn drawn independently from an (�; �)-
measure over a bounded convex set C with small curvature. Then there exist positive
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constants a, b; c and d, depending upon �; � and C only, such that the following
holds. Let y be any point in C at distance a(logn=n)1=3 from the boundary @C and
r � 1=2 d(y; @C) be a positive quantity. Let N1 denote the number of Xi's with the
property that one of the tetrahedra in TXi intersects B(y; r). Then

E[N1] � b+ c r2n2=3 + d nr3 :

Proof: By linearity of the expectation, E[N1] = np, where p is the probability that
one of the Delaunay tetrahedra incident to X1 intersects B(y; r). Let L = d(X1; y);
L is itself a random variable. In the following we condition on the value of X1. The
points X1 and y are then �xed, and we let SX1

be any L-spindle whose axle is X1y.
(Hence the angle � of Figure 1 is arbitrary but �xed.) As before, A1; A2; A3 denote
the 3 balls of the wheel. Remark that the event fSX1

� Cg = fthe 3 balls of the
spindle SX1

are included in Cg.
In the following, let event B1 = fSX1

� C; k3L � rg. Note that the relation k3L � r
implies that X1 does not belong to B(y; r). The �rst inequality is therefore a direct
consequence of Lemma 3. In the third inequality, 1k2L�r0 denotes the random variable
equal to 1 when k2L � r0 and 0 else.

P
�TX1

intersectsB(y; r) �� X1; B1

�
� P

�
one of the 3 ballsA1; A2; A3 contains no pointX2; : : : ; Xn

�� X1; B1

�

�
3X

j=1

P
�
Aj contains none of the pointsX2; : : : ; Xn

�� X1; B1

�

=
3X

j=1

nY
i=2

P
�
Xi 62 Aj

�� X1; B1

�
(1)

� 3E
h �
1� 
(k2L)

3
�n�1

1k2L�r0
�� X1; B1

i

+3E
h �
1� 
r30

�n�1
1k2L>r0

�� X1; B1

i
:

Equation (1) is a consequence of the (conditional) independence of the events Xi 62
Aj . This independence comes both from the fact that the random variables Xi are
independent and the fact that the 3 balls A1; A2; A3 are de�ned independently of the
points X2; : : : ; Xn. The necessity of this last independence is not always recognized
and leads to frequent mistakes in the literature.

We now justify the last inequality. Note �rst that, by Lemma 4, 
(k2L)
3 � 1 when

k2L � r0. The expression (1�
(k2L)3)n�1 is therefore well-de�ned. The conditioning
on SX1

� C ensures that each ball Ai is fully contained in C. This implies in
particular that the center yi of each ball Ai is in C. We can then apply Lemma 4
(which determines the values 
 and r0) using the fact that the random variables Xi

are all drawn independently according to an (�; �)-measure.

We let B1 = fk3L < rg [ fSX1
6� Cg denotes the complement of B1. Integrating the

previous majoration of P [TX1
intersectsB(y; r) jX1; B1] with respect to X1 therefore

gives:

p = P
� TX1

intersectsB(y; r); B1

�
+ P [ TX1

intersectsB(y; r); B1 ]

� P [ k3L < r ] + P
�TX1

intersectsB(y; r); SX1
6� C

�

11



+3E
� �
1� 
(k2L)

3
�n�1

1k2L�r0 1k3L�r
�

+3
�
1� 
r30

�n�1
P
�
k2L > r0; k3L � r

�
def

= I + II + III + IV :

The fact that X1 is drawn from an (�; �)-measure implies that I = P [ k3L < r ] �
(4=3)� �(r=k3)

3 : Also IV � 3e�(n�1)
r3
0 , which is exponentially small with n suf-

�ciently large. We now turn to III . Note �rst that
�
1� 
(k2L)

3
�n�1

1k2L�r0 �
e�(n�1)
(k2L)

3

and therefore, III � 3E
h
e�(n�1)
(k2L)

3

1k3L�r

i
. To estimate this

expression we use spherical coordinates and obtain

III � 16�2 �

�
2

3(n� 1)k32

+

2r2

k2k23(
(n� 1))1=3
1

3
�(

1

3
)

�
:

We now turn to expression II = P [ TX1
intersectsB(y; r); SX1

6� C ] ; its majoration
will involve showing that only \local" vertices X1 have a Delaunay tetrahedron ex-
tending to y.2 We will use this general fact in the vicinity of the boundary @C of C.
Part of our assumptions is that C has low curvature. Therefore, at the very small
distances that we consider, @C appears 
at. We will take advantage of this fact and
model locally the boundary @C to be a plane P : C appears locally like a half-plane
U .3

To simplify we set K = 2k1 and recall that K < 1 � 2k3 < 1. Recall also that we
de�ned SX1

to be any arbitrary, externally �xed, spindle whose axle is yX1: SX1

is not uniquely determined by X1 but also by the angle � of Figure 1. For every
X1 de�ne S 0X1

to be the 3-dimensional \tire" span by SX1
when rotating around

its axle. S 0X1
is uniquely determined by X1 (along with y;K) and contains SX1

so
that, clearly, fSX1

6� Ug � fS 0X1
6� Ug. To further simplify, introduce S 00X1

to be the
following (simpler) object. S 00X1

is composed of (i) the axle X1y, and (ii) a circle of
diameter K, the wheel, perpendicular to X1y whose center is the mid-point q of X1y.
We sometimes write S 00X1

(K) to emphasize the value of K. Furthermore, let P be a
plane such that y 62 P , let U denote the P-half-space to which y belongs, and let h
denote the distance d(y;P) from y to P . We only consider points X in U and say
that the spindle S 00X1

crosses P if its wheel crosses P . As before, we set L = d(X1; y).

Claim: (a) S 00X1
(K) crosses P only if L � L0(h)

def

=
p
1 + 1=K2h.

(b) If K � 0:2 then fS 0X1
(K) 6� Ug � fS 00X1

(1:02K) 6� Ug.
We just show (a). Assertion (b) implies that, for k1 small enough, a minute adjust-
ment in k1 allows to consider fS 00X1

6� Ug in place of fS 0X1
6� Ug.

Consider a given value of L and assume that an L-spindle S 00x1 crosses P . Let m
be a point on the wheel \below" P ; see Figure 6. Note that k1 < 1=2 implies that

d(y;P) � d(y;m) =
�
d(y; q)2 + d(q;m)2

�1=2
< L=

p
2. This implies that there exists

a point x0 2 P and such that d(y; x0) = L. (This point can be obtained by rotating
the spindle around y.) Consider S 00x0 , the spindle associated to x0. The fact that S 00x1
crosses P implies that S 00x0 similarly crosses P . (We provide a pictorial justi�cation of

2Here, \local" means being within distance O((log n=n)1=3) of y: a quantity asymptotically small.
3This is valid only locally. Recall: C is bounded.
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Plane P

y

h

θ

q
U

S"x

x

m

φ

L

0

0

x 1

Figure 6: A spindle S 00x0 crossing P .

this fact. Consider the rotation of the spindle around y in the plane of Figure 6: we
let � denote the angle between ym and the vertical line; �1 is the angle corresponding
to the initial point x1; �0 is the angle corresponding to x0; we also let m1 and m0

denote the positions of m associated respectively to x1 and x0. Obviously m goes
\deeper" below P as � 2 [0; �] decreases to 0. As d(y; q) > d(q;m) the angle �0
belongs to [0; �=2]. Therefore m0 is deeper below P then m1.)

To prove impossibility results we can therefore restrict ourselves to x 2 P . Consider
such an x. The fact that S 00x crosses P implies that d(q;m) = k1L � L=2 tan � where

� = arcsin(h=L). This immediately implies L2 � 1+K2

K2 h2. We are now ready for the
majorations below.

P
�S 00X1

6� U; TX1
intersectsB(y; r) �

= P
�S 00X1

6� U; 9Xi2 ; Xi3 ; Xi4 such thatX1Xi2Xi3Xi4 2 D
and such that X1Xi2Xi3Xi4 \ B(y; r) 6= ; �

� max
y02B(y;r)

P
�9Xi2 ; Xi3 ; Xi4 ; d(X1; y) � L0(h); X1Xi2Xi3Xi4 2 D;

y0 2 B(X1Xi2Xi3Xi4)
�

� max
y02B(y;r)

�
n�1
3

�
P
�
d(X1; y) � L0(h); X1X2X3X4 2 D; y0 2 B(X1X2X3X4)

�

� max
y02B(y;r)

n3=6

Z
Ty0

dPX1;X2;X3;X4
(x; t; z; u)

�
P [X5 62 B(xtzu)]n�4

�
;

where Ty0

def

=
�
(x; t; z; u) 2 U4; d(x; y) � L0(h); and y

0 2 B(xtzu)	, and PX1;X2;X3;X4

denotes the probability law of the random variable (X1; X2; X3; X4).

We now compute an upper-bound for the expression P [X5 62 B(xtzu)] when the
points x; t; z; u of U are such that d(x; y) � L0(h); and such that y0 2 B(xtzu). We

de�ne K 0 def

=
p
1 + 1=K2. Hence L0(h) = K 0h. We also set K 00 def

= 2K 0 � 1. We need
the following claim.

Claim: If d(x; y) � L0(h) and y0 2 B(xtzu) \ B(y; r) then Vol(B(xtzu) \ U) �
�
24 (

K002

1�1=K002 )
1=2 h3

def

= c0h3:

The situation is presented in Figure 7. The ball B(xtzu) cuts minimally U only (i)
when x is on the boundary P , (ii) when y0 is on the boundary of B(xtzu), and (iii)
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Plane P

a

b

line l

x

y’

at least h’

θ

B(x,t,z,u)

line l

at least L’

Figure 7: The cone C contained in every B(xtzu), containing y0 and such that
d(x; y0) � L0(h).

when the center o of B(xtzu) is such that the plane xoy0 is perpendicular to P . We
therefore consider the situation within plane xoy0, as in Figure 7.

The center o is located on the line l perpendicular to y0x and going through the
mid-point a of y0x. Let b be the intersection of l with P . Consider the cone C issued
from b and whose base is the circle with diameter y0x. We claim that C is included
in the ball B(xtzu) cutting minimally U . (i) This ball B(xtzu) must have its center
o below a: if not, at least half of B(xtzu) is in U . (ii) If o is under b, then b is in
the convex hull of the 3 points y0; x; o. All 3 points y0; x; o are in B(xtzu) and hence
so is b. B(xtzu) then clearly contains C. (iii)If c belongs to the segment ab then
d(o; b) � k1L < L=2 � d(o; y0). Thus, if o 2 [a; b] then b 2 B(xtzu) and B(xtzu)
contains C as before.

This shows that v
def

= Vol(B(xtzu) \ U) � Vol(C). Using the fact that d(y; y0) � r �
h=2, we �nd that v is at least equal to �

3 (L
0=2)3 tan(�0=2), where h0

def

= h� h=2 = h=2,

L0
def

= L0(h)� h=2 = K 00h0 and where �0 = arcsin(h0=L0). We obtain v � c0h3, where

c0 = �
24 (

K002

1�1=K002 )
1=2, and have thus proven:

P
�S 00X1

6� C; TX1
intersectsB(y; r) � � n3

6
(1� c0�h3)n�4 � n3

6
e�(n�4)c0�h3 :

Selecting h(n) =
�

4
c0�

logn
n

�1=3
gives II = O(1=n), as needed. Then, multiplying by

n the bounds found for I; II; III and IV and summing establishes the result, and
concludes the proof of Lemma 5.

Lemma 6. Under the hypothesis of Lemma 5

E[N2] � e(b+ cr2n2=3 + dnr3) logn= log logn ;

where N2 is the number of Delaunay tetrahedra that intersect B(y; r) and where e is
a constant depending solely on C;� and �.

To prove this, we need the following result, very similar to the result derived by [BEY91]
in their Theorem 7.

Lemma 7. There exists a constant c00 such that P [do(X1) > c00 logn= log logn] �
1=n4. Therefore

P [9i; do(Xi) > c00 logn= log logn] � 1=n3 :
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Proof: The proof of this result follows very closely the proof for the Poisson model
given in Lemmas 8 and 9 of [BEY91]. The only technical di�erence is that they bound
the �rst probability by 1=n2 instead of 1=n4. We show here that 1=n4 is similarly
valid. A careful reading of their proof shows that we only need to establish that, with
probability at least 1�1=n4, the maximum Delaunay edge length is O

�
(logn=n)1=3

�
.4

We compute:

P [ d(X1; X2) � h; X1X2 2 D ]

� P [ d(X1; X2) � h; 9i3; i4 such thatX1X2Xi3Xi4 2 D ]

� n2(1� 
(h=2)3)n�d�1 � O(n2e�
(h=2)
3n):

Therefore, P [ 9Xi1Xi2 such that d(Xi1 ; Xi2) � h andXi1Xi2 2 D ] �O(n4e�
(h=2)
3n):

This is o(1=n4) if h >
�
32



logn
n

�1=3
.

Proof of Lemma 6: By Euler's formula, there is a constant K such that the
tetrahedron-degree is equal to K times the edge-degree. For convenience, assume
that B2 denotes the event f8i; do(Xi) � c00 logn= log logng, which is identical to
the event f8i; tetrahedron-do(Xi) � Kc00 logn= log logng. Then, from Lemma 7 it
follows that P [B2] � 1=n3 and we have: E[N2] = E[N2;B2] + E[N2;B2]. The two
terms E[N2 ; B2 ] and E[N2 ; B2 ] need to be bounded separately. We begin with
E[N2;B2]:

E[N2 ; B2 ]

= P [B2]E[N2 jB2 ]

� Kc00 P [B2]E[N1 jB2 ] logn= log logn

= Kc00E[N1;B2] logn= log logn

� Kc00E[N1] logn= log logn

� Kc00 (b+ cr2n2=3 + dnr3) logn= log logn :

On the other hand, E[N2 ; B2 ] � O(n2)P [B2 ] � O(n2) 1=n3 = o(1):

Corollary 8. Consider n points X1; : : : ; Xn drawn independently from an (�; �)-
measure over a bounded convex set C with small curvature. Then there exist positive
constants a; b; c; d and e, depending upon �; � and C only, such that the following
holds. Let y be any point in C at distance a(logn=n)1=3 from the boundary @C. Let
r; r � a

2n1=3
be a positive quantity. Let N2 denote the number of Delaunay tetrahedra

that intersect B(y; r). Then
E[N2] � e(b+ c(a=2)2 + d(a=2)3) logn= log logn :

4.3 Summing It All Up

We are ready to prove the theorems.

4Theorem 1 of [BEY91] establishes that the maximum edge length is at most O
�
(log n)1=3

�
with

high probability. Our additional factor 1=n1=3 comes from the fact that they consider a cube of
variable side length 1=n1=3.
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Proof of Theorem 2: We set c1 = a, where a is the constant of Lemma 5 and

Corollary 8. The segment L may be covered by
l
jLj
a n1=3

m
circles of radius a

2n1=3
each

and centered on points yi of L. The number N of intersections between L and the
Delaunay triangulation is bounded by the sum of the number of intersections with
these circles. By Corollary 8, the expected number of intersections with each of these
circles is bounded by K logn= log logn for some constant K depending upon �; � and
C only. Hence,

E[N ] � K

� jLj
a
n1=3

�
logn= log logn

� K

�
1 +

jLj
a
n1=3

�
logn= log logn

which proves Theorem 2.

Proof of Theorem 1: We have in mind to apply Theorem 2 to the segment L = qY .
We are faced with two di�culties. First, both Y and L are de�ned in terms of
Y1; : : : ; Ym and are therefore not independent of X1; : : : ; Xn. Second, Y can possibly
be within distance c4(logn=n)

1=3 from the boundary @C. We will solve the �rst
di�culty by considering a slightly di�erent Delaunay triangulation with respect to
which L is independent. We will solve the second di�culty by showing that Y is with
high probability at distance of at least c4(logn=n)

1=3 from @C.

Let us �rst recall that q and Y are de�ned in very di�erent ways. The condition that
they be \far enough" from the boundary must therefore be handled di�erently. The
query point q is not in the control of the algorithm. It is instead decided externally
and the algorithm is claimed to perform well for all admissible choices of q. Thus,
the assumption \q is at distance of at least n1=18 from @C" is merely a restriction
on the set of query points against which the algorithm has to measure. On the other
hand, the point Y is chosen randomly, as described in the algorithm on page 2. The
fact that \Y is at distance of at least c4(logn=n)

1=3 from @C" cannot therefore be
imposed externally.

Let us relabel fX1; : : : ; Xng � fY1; : : : ; Ymg into fX 0
1; : : : ; X

0
n�mg. As usual, let D

denote the Delaunay triangulation associated to the n points X1; : : : ; Xn, and let D0
denote the Delaunay triangulation associated to the n�m points X 0

1; : : : ; X
0
n�m.

The random variables X 0
1; : : : ; X

0
n�m are independent from the random variables

Y1; : : : ; Ym. This implies that, for every query point q, (X
0
1; : : : ; X

0
n�m) is independent

from Y , which allows us to make the following two conclusions. First, L
def

= (Y; q), the
line segment connecting Y and q, is independent of the n�m data points de�ning
D0. Second, the probabilistic behavior of X 0

1; : : : ; X
0
n�m is una�ected when condition-

ing on the event B3
def

= fd(Y; @C) � c4(logn=n)
1=3g. In formal terms, the probabilistic

law L(X 0
1; : : : ; X

0
n�m) is equal to the conditional law L �(X 0

1; : : : ; X
0
n�m) jB3

�
. In par-

ticular, the random variables X 0
1; : : : ; X

0
n�m are independent identically distributed

(�; �)-random variables under the conditional probability distribution P [ � jB3].

Let N denote the number of tetrahedra in D0 crossed by L. We have E[N ] =
E[N ;B3] + E[N ;B3] where B3 denotes the complement of B3. We provide upper
bounds for the two terms E[N ;B3] and E[N ;B3].

We begin with E[N ;B3]. It is well known that N = O(n2). Hence E[N ;B3] �
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O(n2)P [B3]. We �x c to be a constant such that, for every n, c4(logn=n)
1=3 �

c
2 (1=n)

1=18. Recall that P [B3] = P [d(Y; @C) < c4(logn=n)
1=3] and that, by assump-

tion, d(q; @C) � c(1=n)1=18. By triangular inequality, this implies that:

P [B3 ] � P

�
d(Y; q) � c

2

1

n1=18

�

=

�
P

�
d(Y1; q) � c

2

1

n1=18

��m

=

�
1� P

�
d(Y1; q) � c

2

1

n1=18

��m

� e
�mP

�
d(Y1;q)�

c
2

1

n1=18

�

� e
�n1=5� 4�

3
( c
2
)3 1

n1=6

= o(1=n2):

This shows that E[N ; B3 ] = o(1). We now turn to E[N ;B3 ] = E[N jB3 ]P [B3].
Theorem 2 (see the remark after Theorem 2), along with the fact that X 0

1; : : : ; X
0
n�m

are (�; �)-random variables, independently identically distributed under the measure
P [ � jB3], implies that:

E[N jB3 ] � c4 + c5E [ d(Y; q) jB3 ] (n�m)1=3 logn= log logn :

Hence,

E[N ;B3] � c4P [B3] + c5E [ d(Y; q) ; B3 ] (n�m)1=3 logn= log logn

� c4 + c5E [ d(Y; q) ] n1=3 logn= log logn :

The estimation of E [ d(Y; q) ] is done as in [DMZ95]. The beginning of the argument
is similar to the estimation of P [B3 ] above. Lemma 4 is then used. We let diam(C)
denote the diameter of C. Note that Y and q are in C so that P [ d(Y; q) > t ] = 0 if
t > diam(C).

E [ d(Y; q) ] =

Z 1

0

P [ d(Y; q) > t ] dt

�
Z 1

0

e�mP [d(Y1;q)�t] dt

�
Z r0

0

e�m�
t3 dt +

Z diam(C)

r0

e�m�
r0
3

dt

�
Z 1

0

e�m�
t3 dt + diam(C)e�m�
r0
3

= O(
1

m1=3
)

We have therefore shown that E[N ] = O
�
(n=m)1=3 logn= log logn

�
.
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Figure 8: (a) The sample mean Mn of the number of triangles visited, for a sample
of 999 random query points q for each data set of size n. (b) The ratio Mn=n

1=3.
(c) The ratio Mn=log2 n.

Ntotal, the total number of tetrahedra in D crossed by L is not more than that for D0,
that is, above N , plus the sum S of the tetrahedra degrees of (that is, the number
of tetrahedra adjacent to) Y1; : : : ; Ym in the Delaunay triangulation D. To see this,
note that L either crosses a tetrahedron without one of the Yi's as a vertex (in which
case the tetrahedron is both in D and D0) or one for which Yi is a vertex (in which
case the tetrahedron is in D but not in D0). The total number of the latter kind of
tetrahedra does not exceed S. The expected value of S is, by linearity of expectation,
3m times the expected (vertex) degree �(n) of Y1, where the constant 3 results from
Euler's formula. Combining all this we have:

E[Ntotal] = O
�
(n=m)1=3 logn= log logn+m�(n)

�
:

The time complexity T of the jump-and-march algorithm on page 2 is proportional
to m+Ntotal; the sample size m comes into play because of steps (1) and (2), Ntotal

is due to step (3). E[T ] can thus be optimized to O
�
�(n)1=4n1=4 (logn= log logn)3=4

�
with the choice of m = �

�
n1=4=�(n)3=4 (logn= log logn)3=4

�
.

5 Empirical Results in 2D

This section presents some empirical results on the planar jump-and-march, or bet-
ter, a variation of it. For further convenience, we sample n1=3 edges of the Delaunay
triangulation D, rather than points. Then, we choose the edge whose midpoint has
minimum distance to the query point q. We �nd the triangle containing q by travers-
ing the triangles intersected by L = (y; q), where y is the midpoint of the initially
chosen edge.

We tested this procedure for random point sets of size n = 1000, 2000, : : : , 50000; the
coordinates were chosen randomly out of the unit square. In Figures 8 (a) and 8 (b),
Mn denotes the sample mean of the number of triangles visited, over a sample of 999
queries, and for one random point set of size n, for each n; the coordinates of q (and
the point set) are chosen by random out of the unit square. Thus, Mn corresponds to
the E[Ntotal] in the analysis. Since �(logn) is the best known theoretical bound for
planar point locations; see, for example, [PS85], Figure 8 (c) plots the ratioMn= log2 n
to give a measure for the e�ciency of the method. Note that the best known planar
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point location algorithm [DL76] is obtained by two binary searches, one horizontally
and one vertically, thus has at least a constant of 2 in front of the log2 n.

It should be noted that it might be di�cult to compare our algorithm with that of
the bucketing algorithm of [AEI+85]. Although the latter algorithm takes an average
constant query time, the constant depends on the size of the buckets, hence depends
on the amount of preprocessing performed in the buckets. We believe that when n
is signi�cantly big, for example, n is greater than a million, the bucketing method
might be the best solution for planar point locations. In any case, remember that
bucketing requires preprocessing and additional data structures.

6 Empirical Results in 3D

How does the jump-and-march perform in 3D? Again, we implement a slight variation
of the procedure analyzed in this text; the empirical studies listed here, but also
in the context of incremental Delaunay triangulators [M93], justify this. In order
to discuss the procedure, it helps to have the concept of an oriented triangle � .
In essence, it is given by the (ordered) sequence of its vertices. The vertices then
de�ne (the underlying plane with) a normal vector pointing, by de�nition, to the
triangle's positive side, denoted by �+. Linear algebra dictates that a triangle has
two distinguishable orientations.

With this, our variant, the jump-and-walk, works as follows. First, we sample tri-
angles rather than vertices. The sample size is set to m = O(n1=4), for Delaunay
triangulations of n points. The \distance" of a triangle to the query point q is calcu-
lated as the minimum distance of its three vertices to q. The triangle �0 which scores
with the shortest distance is selected. We adjust its orientation such that q is on its
positive side, that is, q 2 �+0 . The selection of �0 constitutes the \jump" part of the
algorithm.

Second, we perform the following loop, which implements to original \walking" strat-
egy mentioned in the introduction. The loop has the invariant that q 2 �+.

(1) If � is a convex hull triangle and �+ is outside D, then q lies outside D.
Exit loop.

(2) Otherwise, there is a tetrahedron in D incident to � (and in �+).
If this tetrahedron contains q, exit loop.

(3) Otherwise, select a triangle � of the tetrahedron, such that, q 2 �+.

(4) Set � = �, and continue loop at (1).

Each iteration of this loop, corresponds to a tetrahedron visited. Again, note that
this procedure is only guaranteed to terminate for Delaunay triangulations since they
are proven to be \acyclic for any �xed viewpoint" [E90]. For arbitrary triangulations,
this is not necessarily the case; however, if the selection of � in (3) is done by random
(out of the up to 3 possibilities), then the in�nite loop is broken with probability
arbitrary close to 1.
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Figure 9: (a) The sample mean Mn of the number of tetrahedra visited, for a sample
of 9999 random query points q for a random point set of size n. The plotted value
Mn re
ects the worst mean out of 5 random point sets for each n. (b) The ratio
Mn=n

1=4. (c) The ratio Mn=log2 n.

It is clear that, in terms of the number of tetrahedra visited, jump-and-walk can
only be worse than jump-and-march. However, since orientation tests in 3D are
computationally less expensive than intersection tests (in particular, if implemented
in a provable robust fashion), jump-and-walk will still be superior in terms of CPU
time.

For our experiments, we generated 5 random 3D point sets for each n = 1000, 2000,
: : : , 50000. Each data set was then queried with 9999 random points, using the
jump-and-walk algorithm. We chose m = 7n1=4 for the random sample. This was
empirically determined to be the best choice with respect to actual CPU time. It
is obvious that the larger m, the smaller the number of tetrahedra visited in the
walk. For m = 2n1=4, these numbers roughly balance. However, it makes sense to
increase m, because the sampling of a triangle in the jump phase is computationally
less expensive than the visit of a tetrahedron while walking towards the query point.
This is so in particular because care has to be taken to implement the walk robustly,
for example, using symbolic perturbation and exact arithmetic.

For each of the 9999 query points we count the number of tetrahedra visited and
take the mean. This gives us 5 sample mean values for each n; Figure 9 (a) plots
Mn, that is, the largest of the 5. The corresponding 90% con�dence intervals were
consistently smaller than �1%. Here, we say that the sample mean �̂ has a 90%
con�dence interval of �H% if the interval [�̂(1 � H

100 ); �̂(1 +
H
100 )] contains the real

mean � with probability at least 90%.

Figure 9 (b) plots the ratioMn=n
1=4. It indicates that the constants in our analysis are

low, that is, less than 1:6. Moreover, the method compares well with the theoretically
best possible O(logn), which assumes both preprocessing and additional storage.
Figure 9 (c) plotsMn=log2 n and shows that, for the observed range of n, the number
of visited tetrahedra stays well under 2:1 log2 n.

7 Closing Remarks

Point location by walking through a triangulation is often used in the practice of
geometric computing, and with excellent empirical results; in particular in 3D mesh
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generation, see for example, [GH92, BL95, TG+96]. By simulating bucketing via
random sampling, we enhanced the procedure to what we call the jump-and-march,
and we were able to show that the new procedure has an expected running time of
O(n1=4) when applied to the 3D Delaunay triangulation of a uniformly distributed
random point set of size n. Our own empirical tests verify this; in fact, the relaxed
jump-and-walk procedure, which is even easier to implement, performs as good, or
even better in terms of actual running time. Experiments with nonrandom data [M93]
show similar results. Our work justi�es a procedure which is often used in the \real
world" and even suggests a simple yet e�ective improvement.

Our work raises several interesting questions both theoretical and empirical. 1) Our
result shows that the method requires expected time close to O(n1=(d+1)) for d = 3
dimensions. It would be very interesting to settle whether the method performs
equally well for higher dimensions. Two things are required to adapt our proof to
higher dimensions. First, in order extend our Lemma 5 and bound the expected value
of N1, one needs to de�ne appropriately a \d-dimensional spindle": this geometrical
object is composed of d balls whose centers are on a d � 1-sphere positioned on
the hyperplane between X1 and y. A critical step is to provide a d-dimensional
version of our Lemma 3. Second, one need to provide a d-dimensional analog of the
argument allowing to relate N2 to N1. This step might be novel. Indeed, we believe
that our results can be tightened and that 2): In all our results the logn= log logn
terms can be removed. 3) Our results make explicit the perturbing in
uence of the
boundary. The proof of Lemma 5 required to identify locally the boundary @C to
a plane. It would be very interesting to quantify this in terms of the curvature of
@C. 4) It would be extremely interesting to know how the method performs on
non-Delaunay triangulations. 5) Finally it would be very interesting to construct
an adaptive version of our algorithm in the context where many query points are
considered. One possibility would be to incrementally improve the data-structure as
more and more query points are located. This would allow to select the m points of
phase (1) in a more optimal way then purely random, resulting in a point Y closer to
the query point. The improved algorithm could be analyzed via amortized analysis.
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